Improving Circuit Design Using IC Package/PCB Co-Design Techniques

Dynamic new co-design strategies will give the PCB designer the flexibility to re-map legacy package pinouts.

by MARTIN HART

The approach to IC chip packaging design has remained fundamentally unchanged since the 1970s. The chip design team lays out the silicon die and decides what type of IC package to use and how to assign the pinouts. While efforts continue to make co-design of electronic assemblies a reality, no clear communication channel presently exists between the chip and PCB design teams. IC packages are, as the saying goes, simply “tossed over-the-wall” to board designers who are left to deal with whatever comes their way. This is a condition that might well be called “Chip Packaging 1.0” (Figure 1). Since the IC package pinouts are documented in the chipmaker’s datasheet, the board designer has no ability to change any aspect of the IC package or to re-map the pinout when necessary. As a result, the board designer has his shoelaces tied when he enters the race to design his product.

In spite of the recent hoopla to bring co-design into the mainstream, the long-standing protocol of IC design may never entirely go away. However, improvements are possible if IC packaging adopts a new approach that offers more design freedom in what might be codified as the “Chip Packaging 2.0” environment. This new approach is compelling and worthy of consideration. In the new approach, the PCB designer will use their EDA software to iterate the IC package pinouts of a legacy IC die while simultaneously optimizing the board’s routing (Figure 2). This new approach to semiconductor packaging is descriptively referred to as “User Definable Pinout” (UDPo), which enables designers to re-map package pinouts of legacy chips using EDA software tools. The optimized chip is wired by the chipmaker according to the pinout instructions of the PCB designer and added to the PCB BOM for assembly using normal SMT assembly practices.

In looking at a circuit board’s initial design process, the board designer typically makes a series of tradeoffs between electrical, thermal and mechanical needs. Once component locations are established, the circuit schematic is loaded and autorouting of the board commences. The iteration process begins by benchmarking the initials results achieved with “standard pinout” packages. Next, the EDA software begins the pinout iteration process, and pairs of pinouts on selected IC packages are processed while board routing is observed. During the iterative process, improvement is observed as copper routing is shortened, board size is reduced and/or fewer inner layers are

FIGURE 1. Chip packaging 1.0.

FIGURE 2. User definable pinouts.
required. Circuit speed improves roughly
one nanosecond in a theoretical lossless sub-
strate for each 6-inch (150 mm) reduction
of dual copper path (signal plus ground)
according to the speed of light formula.

Typically, the pinout of one chip at
time is optimized, then cycled to the
next chip until the total circuit board is
optimized to the satisfaction of the board
designer. Once the chip pinouts are opti-
mized, the EDA software will output a
bonding schedule (net list) for input into
wire-bonding machines. The chip pack-
ages are bonded using insulated bonding
wire, an important feature of this new
approach, to prevent shorting inside the
IC package. Once optimized, there is
even the possibility of creating single
layer boards as shown in **Figure 3**.

Design Issues with UDPO

While there are a number of promising
attributes in the ideas being proposed,
there are also many issues to be solved
before Chip Packaging 2.0 can be adopt-
ed as a standard industry practice.

For example, EDA software tools
to optimize chip pinouts must be both
reliable and economical before main-
stream board designers will adopt them.
There are already efforts being made
along these lines, with several compa-
nies working on EDA chip co-design and optimization software. Some of these tools were demonstrated during the 2007 Design Automation Conference (DAC) in San Diego and the 2007 Semicon West show in San Francisco.

Assuming that the aforementioned issues with EDA software are resolved, the next challenge for the UDPo approach is in assembling die that may have cross-over wire bonding. Traditional wire bonding is very neat and orderly, however, in the proposed environment “neat and orderly” may need to be replaced with visually disorderly wires that cross over each other (like the type manufactured by Microbonds X-Wire insulated bonding wire) in order to achieve design objectives (see FIGURE 4).

Most wire bonding machines are easily converted to use insulated bonding wire. FIGURE 5 shows an extreme example of insulated bonding wire used in an open cavity QFN package.

Industry standard JEDEC IC package outlines such as QFN, QFP, SOIC, BGA, CSP, TSOP are all easily adapted to the concept of UDPo.

When using bonding wires, the cumulative, thickness of crossing wires cannot exceed the maximum “headroom” of the IC package, which is approximately 10 mils between the upper most wire and the internal ceiling of the plastic IC package. Assuming that typical insulated bonding wire is 1mil in diameter, the maximum number of crossing wires is easily calculable by the designer, while also allowing for the thickness of the die and the lead frame.

The Economics of Designing with User Defined Pinouts

A very simple circuit design will help to illustrate how this new UDPo approach can improve design. FIGURE 6 illustrates the “before” non-optimized board design. U1 and U2 are off-the-shelf 8-pin SOIC packages. The copper routing on the PCB from U1-pin 4 to U2-pin 7 crosses the copper routing from U1-pin 5 to U2-pin 8. To prevent short circuits, board designers would typically add a layer with plated vias to complete the design.

For comparison, FIGURE 7 illustrates the “after” optimized board, with improvements achieved by simply re-mapping the pinouts of U2 without changing the performance of the silicon die. The optimized board has shorter copper routing, less plated vias and fewer layers.

The board designer can thus use EDA chip pinout optimization software to simultaneously iterate and re-map U2, while auto-routing copper traces on the board. After completing the iteration process, the EDA software indicated that 2 bonding wires inside U2 should be remapped, using bonding wires from die pad 7 to lead-frame pin 8 and from die pad 8 to lead-frame pin 7.

The EDA software then creates a bonding schedule (net list), and the data is presented to IC packaging fabricators to assemble the legacy die (or wafer). The wire-bonding machine employs insulated bonding wire to prevent short circuits with the chip package, and U2 is then sent to the board assembler who uses standard SMT assembly practices to mount components and complete the board assembly. Though the above examples in Figure 6 and Figure 7 are simple ones, the same processes can be applied to complex board designs.

It is anticipated that in the early stage of UDPo design, cost per device will be higher due to low volume, non-recurring development and device testing costs. However, it is likely that these higher costs could easily be offset by the lower material costs in PCBs using this design method (smaller boards, fewer inner layers, smaller cabinetry, etc.) as well as the benefits of a faster time to market. Since resultant board designs will become simpler, it is anticipated that there will also be a lowering of costs related to improved yields, reduced testing and rework and lower field failure rates.

Summary

The UDPo approach to co-design, which begins design at the IC package itself, is a dynamic new technique for printed circuit board designers, allowing them to optimize board-level designs by actually re-mapping pinouts of legacy die. In the current packaging environment, there is no communication channel for chip designers to collaborate with board designers, and it need not be that way in the future.

The old “throw it over the wall” approach to IC/PCB design has reached its practical limits. One solution is to give tools to PCB designers that facilitate their ability to re-map legacy package pinouts without changing the performance of the silicon. With this type of tool, PCB designs could be better optimized using IC pinout co-design techniques.

Suitable EDA software that can re-map legacy chip pinouts while simultaneously optimizing the board, create a requisite chip pinout-bonding schedule, and seamlessly deliver it to wire bonding machines (via the Internet or by conventional means) will be needed to reap the prospective benefits that await.

Martin Hart is founder and CEO of Mirror Semiconductor. For more information, contact info@mirrorsemi.com.

Acknowledgements

My gratitude to Joseph Fjelstad for reviewing the manuscript and furnishing excellent feedback.